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Extended  Abstract 

Over the past several years,  we  have  developed  techniques to discriminate between 
fault-prone software modules  and  those  that are not, to estimate a software system's re- 
sidual fault content, to identify those portions of a software system having the highest 
estimated number of faults, and to estimate the effects of requirements changes on soft- 
ware quality. The advantage of these techniques  is  that  they  can  be  applied during the 
stages of a development effort prior to test. By  using these techniques, software manag- 
ers have greater visibility into their  projects, are able to exert more accurate and precise 
control over the systems for which  they are responsible,  and can identify and  repair faults 
during pre-test phases at lower cost. We describe each of these techniques below. 

Classification of Quality 

To classify the quality of software during the  quality  control  and prediction process, 
we have developed Boolean  discriminant functions (BDFs)  and  Residual Critical Value 
Deviation (RCVD). Using failure data from the Space Transportation System Primary 
Avionics Software System (STS  PASS),  BDFs  have  been  shown to provide good accu- 
racy  (i.e., 3% error) for classifying low quality software. This is true because the BDFs 
consist of  more  than just a set of metrics. They include additional  information for dis- 
criminating quality: critical values. In forming BDFs,  nonparametric statistical methods 
are used to: 
1. identify a set of candidate metrics for further analysis. 
2. identify the critical values  of  the  metrics. This computation  is  based  on the Kol- 

mogorov-Smirnov (K-S) test. 
3. find the optimal BDF of metrics  and critical values  based on the  ability of the BDF  to 

satisfy both statistical (i.e., ability to classify quality)  and  application (i.e., quality 
achieved versus the cost to achieve it) criteria. 

The RCVD is based  on  the  concept  that  the extent to which a metric's  value deviates 
from its critical value, normalized  by  the scale of the metric, is  an indicator of the degree 
to which the entity being measured  does  not  conform to a specified norm. For example, 
the extent to which  body  temperature exceeds 98.6 degrees Fahrenheit  is an indicator of 
the deviation from an established norm of  human  health.  Measurement involves using 
surrogates: the deviation in  temperature  above 98.6 degrees is a surrogate for fever. 
Similarly, the RCVD  is a surrogate for the extent  that  the  quality of software deviates 
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from acceptable norms  (e.g., zero discrepancy  reports). An important aspect of software 
measurement is that surrogate metrics are needed to make predictions of quality early in 
development before quality data are available. The RCVD’s  application  is  in assessing 
newly developed modules  by their quality  in  the  absence of quality data. In order to initi- 
ate this process, a build of the software is used to validate the metrics to  be applied to 
later builds. During validation, critical values are estimated by  an inverse Kolmogorov- 
Smirnov distance criterion, as  mentioned  above. The validated critical values are used in 
subsequent builds and can be  updated, if necessary, once the quality data ( e g ,  discrep- 
ancy reports) become available. 

Structural  Evolution 

If a software system’s structural evolutionary  and failure histories during develop- 
ment are available, this information  can be used to construct a detailed  map  of the sys- 
tem’s residual fault content at  any  point  in  time. We have  previously  shown relationships 
between the measured  amount of change between  two successive versions of a software 
module and the number of faults inserted into that  module,  thereby providing an estimate 
of the rate of fault insertion. This lets us estimate the  number of faults inserted into each 
module of the system at any  point during its development. The number of residual faults 
in each module is computed by subtracting the  number of faults known to have  been  re- 
paired in a module (taken from the system’s failure history) from the estimated number of 
faults inserted into that system. If the  system’s failure history  is  not available, a module’s 
proportional fault burden  can still be  computed  using its measured structural evolution. 
In this case, a module’s fault burden  will  be  proportional to the  total  amount of change it 
has received, divided by  the  total  amount of change the system  has  received. Software 
managers can use this information to more  accurately prioritize those modules to which 
fault identification and  repair  resources  should  be applied, thereby  making the most ef- 
fective use of  their  resources. 

Requirements  Risk 

One of the problems during software maintenance is to evaluate the  risk of imple- 
menting requirements changes. These changes can  affect  the  reliability  and maintainabil- 
ity of the software. To assess  the  risk of changes for the NASA Space Transportation 
System flight software, the software development contractor uses  risk factors, including: 

Number of times the change was  presented to the Change Control Board  before being 

0 Whether the change was  on a nominal or off-nominal  path 
Whether the change affects an  area of the software critical to mission success 

0 Number and types of other  requirements  affected by the  given  requirement change 

approved 

The risk factors were identified  by  agreement  between NASA and  the development con- 
tractor based on assumptions about  the  risk  involved  in  making changes to the software. 
To date this qualitative risk  assessment  has  proven  useful for identifying possible risky 
requirements changes or, conversely, providing  assurance  that there are no unacceptable 
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risks in making a change. However, there has been  no quantitative evaluation to deter- 
mine whether, for example, high  risk factor software was  really less reliable and main- 
tainable than low risk factor software. In addition, there is no  model for predicting the 
reliability and maintainability of the software, if the change is implemented. We are 
working  both of these issues. We had considered using  requirements attributes like com- 
pleteness, consistency, correctness, etc as  risk  factors. While these are useful generic 
concepts, they are difficult to quantify. Although some of the  risk factors also have 
qualitative values assigned, there are a number of quantitative factors, and  many of the 
factors deal with the execution behavior of the software (i.e., reliability), which is our re- 
search interest. 

The  Need for Tools 

There are practical issues that  must  be  addressed  prior to implementing these methods on 
a software development effort: 
1 .  Because of the volume of data involved, tools must  be  used to take  the measurements 

needed to  form BDFs and RCVDs, or to measure the history of the system’s struc- 
tural evolution. Although there are many tools for measuring source code during im- 
plementation, the measurements  taken  by  these tools are not standardized. For in- 
stance, each tool may  have a different definition of  what constitutes an operator, and 
of what constitutes an operand. We  have  developed a standard for measuring C and 
C++ source code; the tool  we are currently inserting into development efforts at the 
Jet Propulsion Laboratory  (JPL)  takes  measurements according to this standard. 
When using this tool, we will  always  know  how  the  measurements  were taken, and 
will better to be able to more  precisely determine a particular structural characteris- 
tic’s relationship to fault content. 

In measuring a system’s structural evolution, it  is also necessary  to  have a measure- 
ment process that is minimally intrusive. We  have found that asking developers to 
perform additional activities to measure  their  workproducts results in incomplete, in- 
consistent, and inaccurate measurements. As a solution to this problem,  we have de- 
veloped a set of scripts and a metrics  repository  that integrate with the configuration 
management tool  used by several  development efforts at JPL. Together with the con- 
figuration management policies that are being defined, the scripts will invoke the 
measurement tools in a manner  that is transparent to the developers and append the 
measurements to the repository. The  repository  itself is defined  and implemented in a 
manner that  will make it easy for developers to view  the measurements and relate 
those measurements to the quality of their  workproducts. 

2. We have found it significantly more difficult to measure  artifacts  produced  in earlier 
development phases than to measure source code. In many  development efforts, we 
have observed that the syntax of the notations used  in  producing designs and specifi- 
cations is not as well  defined  as  that of the source code, making it difficult to define a 
complete or consistent set of measurements.  In  many cases, designs  and specifica- 
tions are specified in a mixture of natural  language  and other informal or semi-formal 
notations. This compounds the problem by introducing  the  possibility of incompati- 
bilities between the notations. To resolve this issue, we are currently investigating 
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methods of translating the  outputs of some of the  more popular tools for diagram- 
matically representing a system’s behavior (i.e., statecharts) into forms that can easily 
be  measured. 

3. In estimating the rate of fault insertion, it  is  necessary to trace repaired faults back to 
their insertion point, so that a proper estimate of the fault insertion rate can be  ob- 
tained. However, failure histories often do not directly identify  the faults that were 
repaired - information is limited to a description of the erroneous behavior  and identi- 
fication of the modules(s) that were  repaired. Calibration of the fault insertion model 
requires that the fault data be  at  the  same  level  of  granularity  as  the structural infor- 
mation, i.e., at the  level of individual  modules. Since failures can  span multiple mod- 
ules, the number of observed failures cannot be  used  as a fault count surrogate - the 
underlying faults themselves must  be  identified  and counted. Identification of faults 
within a module may  proceed from examining the differences between successive re- 
visions of a module, provided  that  the faults have  been  repaired i n  the later revision, 
but not in the earlier one. This requires a taxonomy allowing us  to  identify faults un- 
ambiguously and repeatably within these differences. During our previous work,  we 
defined a taxonomy  based  on  the  types of changes made  to a module in response to 
reported failures. We are currently refining this taxonomy  and determining how it 
might be formalized. 

Conclusion 

The above methods can make  use of software measurements available prior to imple- 
mentation, thereby allowing faulty modules to be  identified during early development 
phases. This is especially appealing since  it  has  been  repeatedly demonstrated that  re- 
moving faults during the latter phases of a software development effort can  be one or two 
orders of magnitudes more  costly  than  removing  those same faults during earlier devel- 
opment phases. 
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